Eph signalling functions downstream of Val to regulate cell sorting and boundary formation in the caudal hindbrain.
نویسندگان
چکیده
Rhombomeres are segmental units of the developing vertebrate hindbrain that underlie the reiterated organisation of cranial neural crest migration and neuronal differentiation. valentino (val), a zebrafish homologue of the mouse bzip transcription factor-encoding gene, kreisler, is required for segment boundary formation caudal to rhombomere 4 (r4). val is normally expressed in r5/6 and is required for cells to contribute to this region. In val(-) mutants, rX, a region one rhombomere in length and of mixed identity, lies between r4 and r7. While a number of genes involved in establishing rhombomeric identity are known, it is still largely unclear how segmental integrity is established and boundaries are formed. Members of the Eph family of receptor tyrosine kinases and their ligands, the ephrins, are candidates for functioning in rhombomere boundary formation. Indeed, expression of the receptor ephB4a coincides with val in r5/6, whilst ephrin-B2a, which encodes a ligand for EphB4a, is expressed in r4 and r7, complementary to the domain of val expression. Here we show that in val(-) embryos, ephB4a expression is downregulated and ephrin-B2a expression is upregulated between r4 and r7, indicating that Val is normally required to establish the mutually exclusive expression domains of these two genes. We show that juxtaposition of ephB4a-expressing cells and ephrin-B2a-expressing cells in the hindbrain leads to boundary formation. Loss of the normal spatial regulation of eph/ephrin expression in val mutants correlates not only with absence of boundaries but also with the inability of mutant cells to contribute to wild-type r5/6. Using a genetic mosaic approach, we show that spatially inappropriate Eph signalling underlies the repulsion of val(-) cells from r5/6. We propose that Val controls eph expression and that interactions between EphB4a and Ephrin-B2a mediate cell sorting and boundary formation in the segmenting caudal hindbrain.
منابع مشابه
EphA4 Is Required for Cell Adhesion and Rhombomere-Boundary Formation in the Zebrafish
The formation of boundaries between or within tissues is a fundamental aspect of animal development. In the developing vertebrate hindbrain, boundaries separate molecularly and neuroanatomically distinct segments called rhombomeres. Transplantation studies have suggested that rhombomere boundaries form by the local sorting out of cells with different segmental identities. This sorting-out proce...
متن کاملNotch signalling stabilises boundary formation at the midbrain-hindbrain organiser.
The midbrain-hindbrain interface gives rise to a boundary of particular importance in CNS development as it forms a local signalling centre, the proper functioning of which is essential for the formation of tectum and cerebellum. Positioning of the mid-hindbrain boundary (MHB) within the neuroepithelium is dependent on the interface of Otx2 and Gbx2 expression domains, yet in the absence of eit...
متن کاملvhnf1 integrates global RA patterning and local FGF signals to direct posterior hindbrain development in zebrafish.
The vertebrate hindbrain is transiently divided along the anterior-posterior axis into seven morphologically and molecularly distinct segments, or rhombomeres, that correspond to Hox expression domains. The establishment of a proper 'hox code' is required for the development of unique rhombomere identities, including specification of neuronal fates. valentino (val), the zebrafish ortholog of ma...
متن کاملHox proteins drive cell segregation and non-autonomous apical remodelling during hindbrain segmentation
Hox genes encode a conserved family of homeodomain transcription factors regulating development along the major body axis. During embryogenesis, Hox proteins are expressed in segment-specific patterns and control numerous different segment-specific cell fates. It has been unclear, however, whether Hox proteins drive the epithelial cell segregation mechanism that is thought to initiate the segme...
متن کاملClonal analysis in the developing chick hindbrain provided the first evidence that vertebrate rhombomeres are polyclonal units of cell-lineage restriction [17]. A cellular mechanism for lineage
The segments, or rhombomeres, of the vertebrate hindbrain are visible transiently during development as a series of seven bulges in the neuroepithelium. They underlie reiterated patterns of neuronal differentiation [1–4] and neural crest specification [5,6] but also develop rhombomere-specific features. The appearance of morphologically visible rhombomeres requires the segment-restricted expres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 128 4 شماره
صفحات -
تاریخ انتشار 2001